차 례

PAGE

머리말		1
제품개요		2
PART A : UPMD	화면에서	3
1. UP MODE	먼저 UP MODE 를 선택하세요!	4
2 . 입력사양	내가 사용하는 센서는 ?	5
3. 출력사양	RELAY, SSR, 전류 중 어떤 출력을 사용할까 ?	8
4. 통신사양	컴퓨터와 연결하여 사용하고 싶다구요 ?	10
PART B : CONF	화면에서	11
5.DO 출력	TIME 이벤트, 경보 출력 등을 내고 싶을 때	12
6. DI 입력	외부접점으로 프로그램을 RUN / STOP 할 수 없을까?	14
PART C : CMLP	화면에서	16
7. 전송출력	기록계로 전송하고 싶을 때	17
PART D : PARA	화면에서	19
8. 경보	경보! 경보!! 경보!!!	20
9. 시간단위설정	시.분 혹은 분.초	22
10. ZONE 의 설정	ZONE 을 알면 AT 과 PID 선택이 편리해요	22
PART E : PROG	화면에서	23
11. 프로그램	패턴, TIME 이벤트, PV 이벤트, WAIT, JC 를 설정하자	24
12. LOCAL	정치제어	31
PART F : LP 화민	^년 에서	32
13. AUTO TUNING	PID 는 AUTO TUNING 으로 ······	33
PART G : 운전호	·면에서 ·····	35
14 . 운전화면	실제로 운전해 보자	36

머리말

본 MANUAL 은 당사의 GREEN SERIES (이하GS) 300, 500, 700 SERIES 중 UP550-01 을 중심으로 설명한 한글 MANUAL 이다. 본서는 "UP550 프로그램 조절계"의 일·영문판 TECHNICAL INFORMAION (TI5E1B01-01; 이하 TI)과 INSTRUCTION MANUAL (IM5E1B01-01; 이하 IM)의 내용중 사용자가 반드시 익혀야 하는 기능을 발췌하여 상술 혹은 약술하였 다. 따라서 본서에서 설명이 생략되었거나 미흡한 점이 있으면 TI 와 IM 을 참조하기 바란다.

본서는 PART A ~ G 까지 7 개의 PART 와 14 장으로 구성되어 있다. 각 PART 마다 그 PART 와 관련된 파라메타까지의 경로를 FLOW CHART 로 나타내었다. FLOW CHART 에는 그 PART 에서 기술하고 있는 파라메타를 *ITALIC* 체로 표시하고 있다. 본서에서 설명하지 않은 나머지 파라메타에는 더욱 다양하고 편리한 고급 기능이 있으므로, GS 를 충분히 사용 하기 원하는 사용자는 TI를 참조하기 바란다.

그리고 각 장마다 필요에 따라 "설정예"를 두어 그 장에서 설명한 내용을 쉽게 터득할 수 있도록 배려하였다.

♣ 본서에서 사용된 기호 ♣

제품개요

UP550 은 5 자리까지 표시할 수 있는 대형 PV 표시기와 다양한 표시화면이 준비된 LCD 화면이 내장된 PROGRAMMABLE 조절계이다.

열전대, 측온저항체, 직류전압 등의 입력을 받아 P.I.D. 제어에 의해 RELAY, SSR, 직류전류 출력으로 제어한다.

입력주기(SAMPLING 주기)가 100ms(최단), 측정입력정도가 ±0.1%F.S.의 성능을 가지고 있 어서 온도제어와 입력응답이 빠른 유량, 압력제어등에 적합하다.

형명	기본사양코드	측정입력	보조 아날	제어출력	통신포트	접점입력	접점출력
			로그 입력				
UP55	0 -0 (일반형)	1 점	-	1 점	-	7 점	7 점
	-1 (위치비례)	1 점	-	1 점	-	7 점	7 점
	-2 (가열/냉각)	1 점	-	2 점	-	7 점	7 점
부가	0	_	-	-	-	-	-
사양	1	_	1 점	_	1 포트	1점 추가	_

÷	제품형식과	입력점수	÷
---	-------	------	---

제어출력을 SSR 또는 직류전류를 사용하는 경우에는 제어출력용 RELAY 를 접점출력으로 사용할 수 있다. 따라서 접점출력을 최대 8점까지 사용할 수 있다.

· <u>ITALIC</u> 체는 USER 가 꼭 설정해야 하는 파라메타이다. · ITALIC 체는 본 PART 에서 설명하고 있는 파라메타이다.

1. UP MODE 설정

MD 화면의 'UPM' 파라메타로 설정한다.

UPM	내 용
1	1 LOOP 제어
2	CASCADE 1 차측 제어
3	-
4	CASCADE 제어
5	-
6	2입력 절환 제어
7	2입력 선택 제어

(표 A-1) UP MODE

주 의

UP MODE 를 변경하면 다른 모든 파라메타의 설정치를 초기화 시키므로 반드시 다른 파라 메타를 설정하기에 앞서 UPMD 를 가장 먼저 설정하여야 한다.

설정예

CASCADE 제어 혹은 2 입력을 사용하지 않는 경우에는 'UPM=1' 로 설정하자.

2. 입력사양

IN 화면에서 설정한다.

- · IN1 ~ RJC1, P.UN1 ~ P.RL1 는 제 1 입력부로써 UNIVERSAL 입력이다.
- · IN3 ~ BSL3 는 보조 아날로그 입력부로써 통일신호와 직류전압만을 받을 수 있다. 또한, 보조 아날로그 입력부는 UPM=2, 4, 6, 7 에서 유효하다.

2.1 IN

입력 센서의 종류를 선택한다. ※ '표 A-2 입력 종류' 참조

2.2 UNI

UNIT 를 설정한다.

	UNI	%,	°C,	- (무단위),	°F
--	-----	----	-----	----------	----

2.3 RH, RL

RH(RANGE HIGH)는 입력 상한치이고, RL(RANGE LOW)는 입력 하한치이다.

2.4 SDP

- · 소수점 위치를 결정한다.
- · 입력이 통일신호와 직류전압일 경우만 유효하다.

2.5 SH, SL

SH(SCALE HIGH)와 SL(SCALE LOW)는 입력종류가 통일신호와 직류전압일 경우 만 유효 하다. 즉 전압의 입력을 받아 표시 DATA 의 범위를 결정한다.

· 입력종류를 변경하면 RH, RL, SH, SL 등의 파라메타들이 초기화 된다.

- · 입력종류나 입력범위를 변경하면 입력범위에 관련된 파라메타들, 즉 단위가 EU 혹은 EUS 인 파라메타들이 입력범위에 따라 SCALING 되므로 EU 혹은 EUS 의 단위를 갖는 파라메타들 보다 앞서 입력부를 설정하여야 한다.
 - 예) RH~RL=100~0℃일 때 TSP=50℃로 설정 후 RH~RL=200~0℃로 RH를 변경하면 TSP=100℃로 변경된다.

참조: EU 혹은 EUS의 단위를 갖는 파라메타는 TI5E1B01-01의 '부록 1~4' 참조

실정예	
IN1 = Pt1	☞ Pt100 (-200.0~600.0℃ 범위)를 입력센서로 사용한다.
UNI1 = °C	☞ 표시단위는'℃'이다.
RH1 = 200.0	☞ -200.0~600.0℃의 범위 중 -100.0~200.0℃의 범위만을 사용한다.
RL1 = -100.0	
BSL = UP	☞ BURN OUT 시 'UP' SCALE 로 선택한다.
RJC = ON	☞ 열전대에서는 RJC(기준영접점보상)를 'ON'한다.
IN3 = 1~5V	☞ 보조입력을 1~5V로 입력을 받는다.
UNI3 = °C	
RH3 = 4.000	☞ 1~5V의 범위 중 1.5~4V의 범위를 사용한다.
RL3 = 1.500	
SDP3 = 1	☞ 소수점 위치는 1자리
SH3 = 200.0	☞ 1.5~4V를 -100.0~200.0℃로 표시한다.
RL3 = -100.0	
BSL3 = UP	

입력종류		측정 범위		코드
		-270.0~137	℃ 0.0	typeK1
К		-270.0~100	℃0.0	typeK2
		-200.0~500	Ĵ.0℃	typeK3
	J	-200.0~120	℃0.0	typeJ
	Т	-270.0~400	℃.0	typeT1
		0.0~400.	O°C	typeT2
	В	0.0~1800	℃ 0.	typeB
	S	0.0~1700	℃ 0 .	typeS
열선대	R	0.0~1700	℃ 0.	type R
	Ν	-200.0~130	℃ 0.0	type N
	E	-270.0~100	℃ 0.0	typeE
	L	-200.0~900	℃0.0	typeL
	U	-200.0~400.0 ℃		typeU1
		0.0~400.	℃ 0°0	typeU2
	W	0.0~2300	℃ 0°0.	typeW
	Platinel2	0.0~1390	.0°0.	Plati2
	PR20-40	0.0~1900	℃ 0 .	PR2040
	W97Re3-W75Re25	0.0~2000	.0°0.	W97Re3
	JPT100	-200.0~500	℃0.0	JPt1
		-150.00~150	℃ 00.0	JPt2
측온저항체		-200.0~640	℃.0	Pt1
	PT100	-200.0~500	℃ 0 .0	Pt2
		-150.00~150	℃ 00 .0	Pt3
통일신호	0.4 ~ 2V	0.400~2.000	표시범위:	0.4~2V
	1 ~ 5V	1.000~5.000	-19999	1~5V
직류전압(V)	0 ~ 2V	0.000~2.000	~30000	0~2V
	0 ~ 10V	0.00~10.00		0~10V
직류전압(mV)	-10 ~ 20mV	-10.00~20.00	SPAN :	mV1
	0 ~ 100Mv	0.0~100.0	30000	mV2

(표 A-2)입력종류

3. 출력 사양

OUT 화면에서 설정한다.

3.1 OT

출력종류를 설정한다.

OT1	제어 양식	출력단자와 종류		
		OUT1A (단자번호 :16, 17)	OUT1R (단자번호 :1, 2, 3)	
0	시간비례 PID	(전송출력 2)	RELAY	
1	시간비례 PID	SSR	(TIME EVENT 5)	
2	연속 PID	전류	(TIME EVENT 5)	
3	ON/OFF 제어	(전송출력 2)	RELAY	

(표 A-3) 출력종류

· OT = 0,3일 경우 OUT1A 단자는 전송출력 2 로 사용할 수 있다. 🖙 7. 전송출력 참조

· OT = 1, 2 일 경우 OUT1R 단자는 TIME 이벤트 5 로 사용할 수 있다.

3.2 CT

출력주기를 설정한다. (OT=0, 1에만 유효하다.)

🖉 설정예

OT=1 (SSR), CT=10 초로 설정하였을 때 출력에 따라 SSR 출력이 ON/OFF 되는 시간을 그 림으로 설명한다.

3.3 AO1, AO3

· AO1는 OUT1A 단자가 전류출력으로 사용될 경우 출력범위를 결정한다.

· AO3 는 OUTPUT3 (전송)단자의 출력범위를 결정한다.

AO1, 3	0	1	2	3
전류출력	4~20mA	0~20mA	20~4mA	20~0mA

⁽표 A-4)전류출력범위

4. 통신사양

R485 화면에서 설정한다.

파라메타	내용	설정범위
PSL	PROTOCOL	0 : COMPUTER LINK 1 : COMPUTER LINK (SUM 치 포함) 2 : LADDER 통신 3 : 협조운전(친국) 4 : 협조운전(자국)
BPS	통신속도	600, 1200, 2400, 4800, 9600 (bps)
PRI	PARITY	NONE, EVEN(우수), ODD(기수)
STP	STOP BIT	1, 2
DLN	DATA 길이	7,8:COMPUTER LINK 외에는 8로 설정
ADR	ADDRESS	0~99 : 접속대수는 최대 31 대
RP.T	최소응답시간	0~10 (×10ms)

(표 A-5) 통신사양

PART B : CONF 화면에서

ITALIC 체는 본 PART에서 설명하고 있는 파라메타이다..

5. DO 출력 (접점출력)

경보 출력, PV 이벤트, TIME 이벤트, 패턴 END 출력, 패턴 RUN 출력등을 DO 단자로 출 력할 수 있다. 출력하고 싶은 내용의 I_레지스터 번호를 DO 에 등록하면 출력이 가능하다. DO1~3 (RELAY) 와 DO4~7 (OPEN COLLECTOR)의 7 점이 준비되어 있다.

출력내용	번호	출력내용	번호	출력내용	번호
RESET	5073	PV 이벤트 1	5113	TIME 이벤트 1	5129
PROG	5074	PV 이벤트 2	5114	TIME 이벤트 2	5130
LOCAL	5075	PV 이벤트 3	5115	TIME 이벤트 3	5131
경보 1	5097	PV 이벤트 4	5117	TIME 이벤트 4	5133
경보 2	5098	PV 이벤트 5	5118	TIME 이벤트 5	5134
경보 3	5099	PV 이벤트 6	5119	TIME 이벤트 6	5135
경보 4	5101	PV 이벤트 7	5121	TIME 이벤트 7	5137
패턴 END	5157	PV 이벤트 8	5122	TIME 이벤트 8	5138

(표 B-1) DO에 관련된 I_레지스터

- · TIME 이벤트는 16 개까지 설정이 가능하나 표시하지 않았다.
- ·그 밖의 파라메타에 대한 I_레지스터 번호는 TI5E1B01-01의 'I Relay Map' 참조

- · DO1~3는 RELAY 출력으로써 '90~240VAC, 1A' 또는 '30VDC, 1A'를 초과하여 사용하 지 않도록 주의할 것.
- · DO4~7는 OPEN COLLECTOR 출력으로써 '24VDC, 50mA'를 초과하여 사용하지 않도 록 주의할 것.

DO1 = 5074 (PROG RUN)	☞프로그램 RUN 시에 DO1 단자의 릴레이가 접점된다.
DO2 = 5097 (경보 1)	☞경보 1이 발생하면 DO2단자의 릴레이가 접점된다.
DO3 = 5098 (경보 2)	☞경보 2이 발생하면 DO3단자의 릴레이가 접점된다.
DO4 = 5113 (PV 이벤트 1)	☞PV이벤트1이 발생하면 DO4 단자의 TR이 ON된다.
DO5 = 5129 (TIME 이벤트 1)	☞TIME 이벤트 1 이 발생하면 DO5 단자의 TR 이 ON 된다.
DO6 = 5130 (TIME 이벤트 2)	☞TIME 이벤트 1 이 발생하면 DO6 단자의 TR 이 ON 된다.
DO7 = 5157 (패턴 END)	☞프로그램 종료시 DO7 단자의 TR이 ON된다.

6. DI 입력 (접점입력)

프로그램 RUN / STOP, LOCAL 운전, HOLD 등의 기능을 DI 접점(외부접점)을 통해 실행할 수 있다. 실행시키고 싶은 내용에 DI 의 I_레지스터를 등록시키고 접점을 ON 하면 해당 내용이 실행된다. DI1~7까지 7개의 외부접점이 준비되어 있다.

6.1 PROG

현재 설정된 패턴의 프로그램을 실행시킨다,

6.2 RST

현재 진행중인 프로그램이나 LOCAL(정치) 제어를 종료시킨다.

6.3 LOC

LOCAL(정치) 제어를 실행시킨다.

6.4 HOLD

프로그램을 HOLD 시킨다.

6.5 ADV (ADVANCE)

현재 진행중인 세그먼트를 건너뛰고 다음 세그먼트를 진행시킨다.

6.6 A/M1

AUTO ↔ MAN 제어로 전환한다. (ON:AUTO, OFF:MAN) A/M2 : 무효(UP750 에만 사용됨)

6.7 L/C

LOCAL ↔ CASCADE 제어로 전환한다. (UPMD=4 일 경우 만 유효)

6.8 PTN.0~4

패턴 번호를 전환시킨다

DI	번호	DI	번호	DI	번호
DI1	5161	DI4	5164	DI7	5167
DI2	5162	DI5	5165	DI8	5168
DI3	5163	DI6	5166		

(표 B-2) DI의 I_레지스터

설정예

☞DI1 가 ON 되면 프로그램이 RUN 된다.
☞DI2가 ON 되면 프로그램이 종료된다.
☞DI3가 ON 되면 LOCAL(정치)제어가 된다.
☞DI4 가 ON 되면 HOLD 된다.
☞DI5가 ON 되면 ADVANCE 시킨다.
☞A/M1는 DI에 의해 작동시키지 않는다.(OFF)
☞L/C 는 DI에 의해 작동시키지 않는다.(OFF)
☞PTN.0는 DI에 의해 작동시키지 않는다.(OFF)
☞DI6가 ON 되면 패턴번호가 1로 설정된다.
☞DI7가 ON 되면 패턴번호가 2로 설정된다.

PART C : CMLP 화면에서

ITALIC 체는 본 PART에서 설명하고 있는 파라메타이다..

7. 전송출력

RET 화면에서 설정한다.

전송은 AO3에 따라 4~20mA, 0~20mA, 20~4mA 혹은 20~0mA의 전류를 출력한다. ※ 자세한 사항은 '3.3 AO1, AO3' 참조

7.1 RET1~2

전송 종류를 선택한다.

RET	내 용
OFF	전송하지 않는다.
1	PV1 : 측정치를 전송한다.
2	SP1 : 설정치를 전송한다.
3	OUT1 : 출력치를 전송한다.
4	LPS : 센서용 전원을 공급한다. (약 15VDC)
5	PV2 : 무효
6	SP2 : 무효
7	OUT1 : 무효

(표 C-1) 전송 종류

7.2 RTH1~2

전송출력의 최대치 (RET=1,2에만 유효)

7.3 RTL1~2

전송출력의 최소치 (RET=1,2에만 유효)

RET 2 (전송출력 2) 는 OT = 0, 3 일 경우만 사용 가능하다. 📨 '3.1 OT' 참조

) 설정예

OT=0(RELAY). AO1=0(4~20mA), AO3=0(4~20mA)일 경우로 설명한다.

RET1=1	☞측정치(PV1)를 전송한다.
RTH1=200.0	☞측정치 -100~200℃를 4~20mA로 전송한다.
RTL1=-100.0	
RET2=2	☞설정치(SP1)를 전송한다.
RTH2=200.0	☞설정치 -100~200℃를 4~20mA로 전송한다.

PART D : PARA 화면에서

ITALIC 체는 본 PART에서 설명하고 있는 파라메타이다..

8. 경보

ALM 화면에서 경보종류(AL1~4)와 HYS1~4 를 설정한다. AL 화면에서 경보치(A1~4)를 설정한다.

8.1 PEH1~8

PV 이벤트에 대한 HYS 를 설정한다.※ 이벤트설정은 '11.4 이벤트설정' 참조.

8.2 AL1~4

경보 종류를 선택한다.

※ '표 D-2 경보 및 PV 이벤트종류' 참조.

8.3 HY1~4

경보(AL1~4)에 대한 HYS 를 설정한다.

8.4 AMD

경보(AL1~4)에 대한 모드이다.

AMD	내용
0	모든 상태에서 경보가 유효하다.
1	RESET 상태에서는 경보가 무효이다.
2	RESET 또는 MAN 출력시 경보가 무효이다.

(표 D-1) 경보 모드

8.5 A1~4

경보종류(AL1~4)에 따라 경보동작이 발생하는 경보치(A1~4)를 설정한다.

경보종류	내용	접점출력	경보종류	내용	접점출력
1	측정치상한	여자(勵磁)	6	편차하한	비여자
2	측정치하한	여자	7	편차상하한	여자
3	편차상한	여자	8	상하한편차범위內	여자
4	편차하한	여자	9	측정치상한	비여자
5	편차상한	비여자(非勵磁)	10	측정치하한	비여자
28	설정치상한	여자	30	출력치상한	여자
29	설정치하한	여자	31	출력치하한	여자

(표 D-2) 경보 및 PV 이벤트 종류

AL1~4 를 변경하면 HY1~4 와 A1~4 의 설정치를 초기화 시키므로 반드시 HY1~4 와 A1~4 를 설정하기에 앞서 AL1~4 를 먼저 설정하여야 한다.

AL1=1, A1=100, HYS=5 로 설정하였을 때를 그림으로 설명한다.

9. 시간단위의 설정

SP 화면에서 설정한다.

◎TMU : 프로그램을 진행시킬 때 시간단위(TIME)를 결정한다.

- · hh:mm : 프로그램 설정시 시간을 '시.분'으로 설정한다.
- · mm:ss: 프로그램 설정시 시간을 '분.초'로 설정한다.

10. ZONE 의 설정

CTL 화면에서 설정한다.

AUTO TUNING을 할 경우 혹은 프로그램이나 LOCAL 제어를 실행할 경우 PID GROUP 을 자동으로 선택하게 한다.

10.1 ZON = 0(OFF)

- · 프로그램 설정시 사용자가 각 SEG 별로 PID GROUP 을 임의로 지정하여 운전시킬 수 있다.
 - ※PID GROUP 을 선택하는 방법은 '11.프로그램설정' 참조.
- · AUTO TUNING 시 현재의 설정치(SP)를 가지고 AUTO TUNING 을 실행한다. ※'13. AUTO TUNING' 참조.

10.2 ZON = 1(ON)

- · RPn 을 이용하여 구간을 나누어 조절계가 자동으로 PID GROUP 을 선택하여 운전 한다.
- · AUTO TUNING 시 구간을 나누어 조절계가 자동으로 AUTO TUNING 을 실행한다. ※ '13. AUTO TUNING' 참조.

주 의

ITALIC 체는 본 PART에서 설명하고 있는 파라메타이다..

11. 프로그램

PROG 화면에서 설정한다. UP550 은 30 패턴까지 설정할 수 있다.

11.1 패턴번호와 세그먼트번호

- · PTN : 패턴 번호를 선택한다. (1~30 패턴)
- · SEG : 세그먼트번호를 선택한다. (1~99 SEG)

세그먼트번호는 사용자가 직접 번호을 설정하여 해당 세그먼트로 진입할 수도 있으나, 목표치를 설정함에 따라 자동으로 다음 세그먼트로 증가한다.

· PV 창에 현재 설정 중인 패턴번호와 세그먼트번호가 나타난다.

예) 02.12 : 2 패턴의 12 SEG

11.2 패턴조건 설정

SEG=0에서 설정한다.

11.2.1 SSP1 : 프로그램 시작치를 설정한다.

11.2.2 STC : START 코드를 설정한다.

STC	0	1	2
내용	SSP START	PV START(구배우선)	PV START(시간우선)

11.3 WAIT 과 패턴반복

11.3.1 WAIT

WAIT는 1~5 GROUP이 있다.

5 개의 GROUP 의 각각에 사용하고자 하는 WAIT 조건을 다르게 설정하고 각 세그먼트에 있는 JC 를 이용하여 원하는 GROUP의 WAIT 조건을 해당 세그먼트에 적용시킬 수 있다.

- · 1~5.WZ1 : WAIT ZONE 을 설정한다.
- · 1~5.WTM : WAIT 시간을 설정한다.

11.3.2 패턴반복

- · RCY : 반복횟수를 설정한다.
- · RST : 반복시작 세그먼트번호를 설정한다.
- · REN : 반복끝의 세그먼트번호를 설정한다.

- · WZ 이하 REN 까지는 'STC=-1'로 선택하면 진입할 수 있다.
- · WAIT 기능은 '11.5 JC'참조

11.4 프로그램 설정

- · TSP1 : 각 세그먼트에서의 목표치를 선택한다.
- · TIME : 세그먼트 진행시간을 설정한다.
- · PID : PID GROUP 을 설정한다. (ZON = 1시 무효)
- · EV : 이벤트를 설정한다.
- · JC: JUNCTION 코드를 설정한다.

참 조

- · PID 선택은 '10. ZONE 의 설정'과 '13. AUTO TUNING' 참조.
- · EV (이벤트) 기능은 '11.4 이벤트 설정' 참조
- · JC는 '11.5 JC' 참조

11.5 이벤트 설정

이벤트는 1세그먼트당 8개까지 설정이 가능하다.(EV1~8)

11.5.1 TIME 이벤트

- · EVn = 1~16: 16 개의 TIME 이벤트 설정이 가능하다.
- · ONn = TIME 이벤트 ON 시간이다.
- · OFFn = TIME 이벤트 OFF 시간이다.

11.5.2 PV 이벤트

- · EVn = 21~28:8개의 PV 이벤트 설정이 가능하다.
- · TYn = PV 이벤트의 종류를 선택한다.
- · PEn = PV 이벤트의 설정치이다.

TIME 이벤트의 ON 시간과 OFF 시간은 해당 세그먼트를 기준한 시간이다. 예를들어 TIME 이벤트를 3 SEG 에서 설정하고 ON 시간=10 분, OFF 시간=30 분이었다면 3 SEG 가 시작된 후 10 분 후에 TIME 이벤트가 ON 되고 30 분 후에 OFF 되어 이벤트 발생시 간은 20 분이 된다.

자세한 사항은 '설정예'를 참조하시오

PV 이벤트종류는 '8. 경보'의 '표 D-2 경보 및 PV 이벤트종류' 참조

SEG = 0 에서 패턴조건을 "SSP=23℃, STC=0, RCY=3, RST=2, REN=4", 그리고 "ZON=0" 이라 설정한 후 아래 도표와 같이 프로그램을 설정하였다.

	SEG1	SEG2	SEG3	SEG4	SEG5
TSP1	50.0	50.0	100.0	100.0	20.0
ТМ	1h00	1h30	1h00 2h00		1h30
PID	1	2	2	1	3
	EV1=1 (TME1) ON1=0h00	-	EV1=1(TME1) ON1=0h20	-	EV1=1(TME1)
	OFF1=1h00		OFF1=1h30		ON1=1h00 OFF1=2h00
	EV2=3 (TME3)		EV2=2(TME2)		
	ON2=0h00	-	ON2=0h00	-	-
EVn	OFF2=0h40		OFF2=0h40		
	EV3=21 (PVE1)				
	TY3=1	-	-	-	-
	PE3=50.0				
	EV4=23 (PVE3)				
	TY4=2	-	-	-	-
	PE4=40.0				

11.6 JC (Junction Code)

11.6.1 JC=0 (OFF)

11.6.2 JC=1(HOLD)

JC=1이 설정된 세그먼트까지 진행한 후 다음 세그먼트에서 HOLD 된다.

11.6.3 JC=2(LOCAL)

패턴의 마지막 세그먼트에 설정하면 프로그램 종료 후 LOCAL(정치) 제어 상태로 전환된 다.

11.6.4 JC=11~15(WAIT)

- · 설정치가 유지되는(평평한) 세그먼트에서 WAIT 동작을 실행한다.
- · JC11~15는 1~5.WZ에 각각 대응한다. 즉 WAIT 조건을 1~5.WZ의 5개 GROUP으로 나누어 설정한 후 각 세그먼트에서 적당한 조건을 갖는 GROUP을 JC로 선택할 수 있다.

11.6.5 JC21~25(WAIT)

- · 설정치가 변하면서 진행되는(경사진) 세그먼트에서 WAIT 동작을 실행한다.
- · JC21~25는 1~5.WZ에 각각 대응한다.

11.6.6 JC=INSERT

SEG 와 SEG 사이에 새로운 SEG 를 삽입시키려할 때 사용한다.

11.6.7 JC=DELETE

SEG 를 삭제시키려할 때 사용한다.

HOLD를 해제시키면 다음 SEG로 진행한다.

[◎] 아래표와 같이 3개의 WAIT GROUP를 설정하고 JC를 이용하여 WAIT 동작을 시켜보자.

1WZ	5℃	2WZ	10 ℃	3WZ	15 ℃
1WTM	1h00	2WTM	0h30	3WTM	1h00

[※] WAIT 설정은 '11.2.3 WAIT 와 패턴반복' 참조

• JC = 11 (WAIT)

2 SEG 에서 JC=11 를 설정하면 1 GROUP 의 WAIT 가 선택된다. 이때 TSP=90℃, 1WZ=5℃이므로 WAIT 구간은 85~95℃ 사이가 된다. 설정된 'WTM=1시간' 보다 측정치(PV)가 WAIT 구간내에 빨리 도착하면 그 시점에서 WAIT 가 해제되고 다음 세그먼트로 진행한다.

· JC = 12 (WAIT)

2 SEG 에서 JC=12 를 설정하면 2 GROUP 의 WAIT 가 선택된다. 이때 TSP=90℃, 2WZ=10℃이므로 WAIT 구간은 80~100℃사이가 된다. 설정된 'WTM=30 분' 내에 측정치(PV)가 WAIT 구간내로 도착하지 않으면 'WTM=30 분' 되는 시점에서 WAIT 가 해제되고 다음 세그먼트로 진행한다.

· JC = 21 (WAIT)

1 SEG 에서 JC=21를 설정하면 1 GROUP의 WAIT가 선택된다. 이때 현재 진행중인 SP 값에 따라 WAIT구간도 함께 변경된다. 예를들면 현재의 SP가 50℃이면, 1WZ=5℃이므로 WAIT 구간은 45~55℃사이가 된다.

①+② : 1 SEG 진행시간

※ JC=13 혹은 23을 설정하지 않으면 3 GROUP의 WAIT는 동작하지 않는다.

12. LOCAL(정치제어)

LOC 화면에서 설정한다.

프로그램운전과 다르게 LOCAL 은 하나의 목표치에 대해서 제어를 하는 정치제어이다.

12.1 LSP1

LOCAL 제어에서의 목표치이다.

12.2 PID

- · LOCAL 제어에서 사용하는 PID GROUP 번호이다. (ZON=0일 경우 유효)
- · ZON=1 일 경우는 PID 번호가 무시되고 RP에 따른 온도구간에 따라 PID 번호가 자동으로 설정된다.

※'13. AUTO TUNING' 참조

12.3 E21~28A

PV 이벤트 1~8 의 이벤트종류를 선택한다.

12.3 E21~28B

PV 이벤트 1~8 의 설정치이다.

존재하지 않	낳는다.					
· E21~28A 는	프로그램의 PV 이벤트에서	'TY1~8'에	해당한다.	ল্ল '11.4	이벤트설정'	참조
· E21~28B 는	· 프로그램의 PV 이벤트에서	'PE1~8'에	해당한다.	ল্ল '11.4	이벤트설정'	참조
· LOCAL 의	이벤트종류도 프로그램의 PV	✔이벤트와	같다.	☞ '8 . 경	보'참조	
· 이벤트 1~8	까지의 HYS는 프로그램의	PV 이벤트의	과 같이			
ALM 화면의	PEH1~8 를 사용한다.			☞ '8 . 경	보'참조	

PART F : LP1 화면에서

ITALIC 체는 본 PART에서 설명하고 있는 파라메타이다..

13. AUTO TUNING

PAR 화면에서 설정한다.

13.1 ZON = 0 (OFF) 일 때

현재 사용중인 목표설정치(TSP)로 AUTO TUNING을 실행하여 사용자가 설정한 PID 번호에 저장시킨다.(이때 AT 번호는 무효) 예를들면 현재 사용중인 SEG 에 PID=3 으로 설정하고 SP=30℃에서 AT=1 로 AT 를 실행시키면 30℃로 AUTO TUNING 하여 그 결과를 PID 3 GROUP에 저장시킨다.

13.2 ZON = 1 (ON) 일 때

```
13.2.1 AT = 1~8 일 경우
```

현재 진행중인 설정치(NSP)로 AUTO TUNING을 실행하여 사용자가 설정한 AT 번호에 해 당하는 PID GROUP에 저장된다. (이때 PID 번호는 무효) 예를들면 현재 사용중인 SEG 에 PID=3 으로 설정하고 현재 SP 가 SP=30℃에서 AT=1 로 AT 를 실행시키면 30℃로 AUTO TUNING 하여 그 결과를 PID 1 GROUP에 저장시킨다.

13.2.2 AT = 9 일 경우

1~6.PID GROUP 각각에 1~6.RP가 있고 이들 값의 범위에서 PID 번호가 결정된다. 각 PID GROUP에서 설정한 RP 값의 중간치로 AUTO TUNING 을 실행한다.

AUTO TUNING 의 결과는 AT 번호에 해당하는 PID GROUP에 저장된다.

(이때 PID 번호는 무효)

또한 AT=9 를 선택하면 AT=1~8을 자동으로 실행하여 각 PID GROUP에 저장시킨다. 이때 PID 8 GROUP 은 RH~RL 의 중간값으로 AT 를 실행한다.

- · 프로그램 혹은 LOCAL 제어일 때만 AUTO TUNNING 이 가능하므로 RESET 상태에서는 실행이 불가하다.
- · 출력이 AUTO 일 경우에만 AUTO TUNNING 이 가능하므로 MAN 제어일 때는 실행이 불가하다.
- · 입력단선(BURN OUT)등의 이상 상태에서는 AUTO TUNNING 이 불가하다.

· ZON = 1 일 때

RH=200℃, RL=-100℃, 1.RP=-50℃, 2.RP=0℃, 3.RP=100℃, 4~6.RP=200℃으로 설정한 후 AT = 9 로 하여 AT 를 실행하면 그림과 같이 -75℃, -25℃, 50℃, 150℃에서 각각 AT POINT를 잡아 AT를 실행 후 그 결과를 1,2,3,4 PID GROUP에 각각 저장시킨다. 또한, RH 와 RL 의 중간값인 50℃에서 AT를 실행하여 8 PID GROUP에 저장시킨다.

이때 사용자가 미리 PID 번호를 설정하였다 하더라도 그 번호는 무시된다.

PART G: 운전화면에서

14. 운전화면

14.1 KEY 설명

 ▼PT.No▲ (PTNO): 사용자가 설정한 패턴 중 운전하고자하는 패턴을 선택한다. 이 때 LCD의 PTNO에서 선택된 패턴 번호를 보여준다.
 RUN (RUN): 선택한 패턴을 실행시킨다.
 RESET (RESET): 현재 진행중인 프로그램이나 LOCAL(정치)제어를 중단시킨다.
 DISP (DISP): 운전화면은 5개의 화면으로 구성되어 있어서 각 화면마다 다양한 정보를 제공한다. 이들 운전화면을 전환하는 키이다.
 MODE (MODE): 운전중 행할 수 있는 기능이 나타난다.

※ 기능은 '14.4 MODE' 참조

14.2 프로그램운전

▼PT.No▲ 키를 사용하여 원하는 패턴을 선택한다. RUN 키를 누르면 프로그램이 실행된다. 이때 'PRG' LED 가 점등된다. 프로그램을 강제로 종료시키려면 RESET 키를 사용한다.

14.3 LOCAL 운전.

 MODE
 키를 'LOC : ON'이 나올 때까지 누른후
 SET/ENT
 키를 누르면 LOCAL 제어가 실행

 된다. 이때 'LOC' LED 가 점등된다.

 LOCAL 제어에서 목표치(LSP)의 변경은 'LOC 화면'에서 할 수 도 있지만, 운전 제 1 화면

에서 SP 가 나오면 SETTENT 키를 눌러 ▶▶SP 가 나오게 한 뒤 △ ▼ 키로 SP를 직접 변경할 수 도 있다.

14.4 MODE

MODE 키를 누르면 아래 기재된 파라메타가 차례로 나타난다. 원하는 기능의 파라메타가 나타났을 때 SET/ENT 키를 누르면 그 파라메타의 기능이 동작한다.

14.4.1 HOLD : ON

현재 진행중인 프로그램을 HOLD 시킨다. (프로그램운전시만 유효) 이때 'HLD' LED 가 점등된다.

14.4.2 HOLD : OFF

HOLD를 해제시킨 후 프로그램을 진행시킨다. (HOLD 중에만 유효) 이때 'HLD' LED 가 소등된다.

14.4.3 ADV : ON

현재 진행중인 프로그램의 세그먼트를 건너뛰고 다음 세그먼트로 진행시킨다. (프로그램운전시만 유효)

14.4.4 LOC : ON

LOCAL(정치) 제어를 실행시킨다. 이때 'LOC' LED 가 점등된다.

14.4.5 MODE : MAN1

출력제어방식을 AUTO 제어에서 MAN 제어로 전환시킨다. 이때 'MAN' LED 가 점등된다.

14.4.6 MODE : AUTO1

출력제어방식을 MAN 제어에서 AUTO 제어로 전환시킨다. 이때 'MAN' LED 가 소등된다.

14.5 LED

- · PVE 1, 2 : PV 이벤트 1, 2 가 발생했을 때 점등된다.
- · TME 1~4 : TIME 이벤트 1~4 가 발생했을 때 점등된다.
- · AL1: 경보1이 발생했을 때 점등된다.
- · PRG: 프로그램이 실행되면 점등된다.
- · RST : 프로그램 혹은 LOCAL 제어가 종료되면 점등된다.
- · HLD: HOLD 중에 점등된다.
- · LOC: LOCAL 제어가 실행되면 점등된다.
- · MAN: 출력이 MAN 제어일 때 점등된다.

AUTO TUNNING 중에는 점멸한다.

· CAS: CASCADE 제어일 때 점등된다.